Oxidative stress augments pulmonary hypertension in chronically hypoxic mice overexpressing the oxidized LDL receptor.

نویسندگان

  • Sayoko Ogura
  • Tatsuo Shimosawa
  • Shengyu Mu
  • Takashi Sonobe
  • Fumiko Kawakami-Mori
  • Hong Wang
  • Yuzaburo Uetake
  • Kenichi Yoshida
  • Yutaka Yatomi
  • Mikiyasu Shirai
  • Toshiro Fujita
چکیده

Chronic hypoxia is one of the main causes of pulmonary hypertension (PH) associated with ROS production. Lectin-like oxidized low-density lipoprotein receptor (LOX)-1 is known to be an endothelial receptor of oxidized low-density lipoprotein, which is assumed to play a role in the initiation of ROS generation. We investigated the role of LOX-1 and ROS generation in PH and vascular remodeling in LOX-1 transgenic (TG) mice. We maintained 8- to 10-wk-old male LOX-1 TG mice and wild-type (WT) mice in normoxia (room air) or hypoxia (10% O2 chambers) for 3 wk. Right ventricular (RV) systolic pressure (RVSP) was comparable between the two groups under normoxic conditions; however, chronic hypoxia significantly increased RVSP and RV hypertrophy in LOX-1 TG mice compared with WT mice. Medial wall thickness of the pulmonary arteries was significantly greater in LOX-1 TG mice than in WT mice. Furthermore, hypoxia enhanced ROS production and nitrotyrosine expression in LOX-1 TG mice, supporting the observed pathological changes. Administration of the NADPH oxidase inhibitor apocynin caused a significant reduction in PH and vascular remodeling in LOX-1 TG mice. Our results suggest that LOX-1-ROS generation induces the development and progression of PH.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Serotonin Signaling Through the 5-HT1B Receptor and NADPH Oxidase 1 in Pulmonary Arterial Hypertension

OBJECTIVE Serotonin can induce human pulmonary artery smooth muscle cell (hPASMC) proliferation through reactive oxygen species (ROS), influencing the development of pulmonary arterial hypertension (PAH). We hypothesize that in PASMCs, serotonin induces oxidative stress through NADPH-oxidase-derived ROS generation and reduced Nrf-2 (nuclear factor [erythroid-derived 2]-like 2) antioxidant syste...

متن کامل

P 9: Neuoprotective Effect of Cannabinoid CB1 Receptor Antagonists Rimonabant and AM251 on Hypoxic Mouse Model of Brain Oxidative Stress

Introduction: The hypoxic state, in which experimental animals were subjected to an atmosphere of 5% O2 and %95 N2, has been used to screen agents for possible cerebral protection by measuring their ability to prolong survival time in mice exposed to hypoxia. Researchers showed that rimonabant and AM251 allosteric potentiate all but the β1 subunit containing GABAA receptors at nM...

متن کامل

Inhibition of 5-Lipoxygenase Activating Protein in Hypoxic Rats

Chronically elevated shear stress and inflammation are important in hypertensive lung vessel remodeling. We postulate that 5-lipoxygenase (5-LO) is a molecular determinant of these processes. Immunohistology localized the 5-LO to macrophages of normal and chronically hypoxic rat lungs and also to vascular endothelial cells in chronically hypoxic lungs only. In situ hybridization of normal and c...

متن کامل

Melatonin Attenuates Pulmonary Hypertension in Chronically Hypoxic Rats

Chronic hypoxia induces pulmonary hypertension and vascular remodeling, which are clinically relevant to patients with chronic obstructive pulmonary disease (COPD) associated with a decreased level of nitric oxide (NO). Oxidative stress and inflammation play important roles in the pathophysiological processes in COPD. We examined the hypothesis that daily administration of melatonin (10 mg/kg) ...

متن کامل

Stress and vascular responses: endothelial dysfunction via lectin-like oxidized low-density lipoprotein receptor-1: close relationships with oxidative stress.

Endothelial dysfunction is associated with pathological vascular conditions including atherosclerosis, hypertension, and diabetes. The oxidatively modified form of low-density lipoprotein (LDL) is recognized as a major cause of endothelial dysfunction in atherogenesis. As the receptor for oxidized LDL in endothelial cells, we have identified the lectin-like oxidized LDL receptor-1 (LOX-1). LOX-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 305 2  شماره 

صفحات  -

تاریخ انتشار 2013